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Abstract
Node classification with Graph Neural Networks (GNN) under a
fixed set of labels is well known in contrast to Graph Few-Shot Class
Incremental Learning (GFSCIL), which involves learning a GNN
classifier as graph nodes and classes growing over time sporadically.
We introduce inductive GFSCIL that continually learns novel classes
with newly emerging nodes while maintaining performance on old
classes without accessing previous data. This addresses the practical
concern of transductive GFSCIL, which requires storing the entire
graph with historical data1. Compared to the transductive GFSCIL,
the inductive setting exacerbates catastrophic forgetting due to in-
accessible previous data during incremental training, in addition to
overfitting issue caused by label sparsity. Thus, we propose a novel
method, called Topology-based class Augmentation and Prototype
calibration (TAP). To be specific, it first creates a triple-branch
multi-topology class augmentation method to enhance model gen-
eralization ability. As each incremental session receives a disjoint
subgraph with nodes of novel classes, the multi-topology class aug-
mentation method helps replicate such a setting in the base session
to boost backbone versatility. In incremental learning, given the
limited number of novel class samples, we propose an iterative
prototype calibration to improve the separation of class prototypes.
Furthermore, as backbone fine-tuning poses the feature distribution
drift, prototypes of old classes start failing over time, we propose
the prototype shift method for old classes to compensate for the
drift. We showcase the proposed method on four datasets.

∗Most work done at CSIRO.
†Corresponding author. This work is accepted by the 18th ACM International
Conference on Web Search and Data Mining (WSDM), 2025.
1A well-established research on incremental learning in computer vision [21, 29] does
not permit access to the whole of the past training data due to privacy preservation
and memory limitation considerations. By analogy, graph incremental learning models
should not store the subgraphs corresponding to the past sessions, making such a
setting an inductive GFSCIL setting.
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1 Introduction
Node classification via Graph Neural Network (GNN) [4–6, 22] is a
well-studied topic. However, most existing GNNs operate within a
predefined class space in contrast to recent trends in lifelong learn-
ing that permit open-ended label space [16]. As time progresses, the
graph evolves and novel categories emerge with small quantities
of additional nodes and links that appear over time. Thus, GNNs
should have the ability to be incrementally updated to capture
novel classes without the performance loss on old classes. Recently
proposed Graph Few-Shot Class Incremental Learning (GFSCIL)
[11, 18] primarily concentrated on the transductive setting. As de-
picted in Figure 1(a), new nodes and links that emerge with time are
appended to the graph of the previous session. Hence, the model
has access to the entire graph.

However, this assumption does not always align with real-world
scenarios. In practice, it is common for newly formed (sub)graphs
to arise and exist autonomously, with nodes of novel classes devoid
of any connections with antecedent graphs. This phenomenon is
particularly conspicuous in social media networks, such as Reddit
or Twitter(X), where rapidly changing events frequently foster the
formation of closely-knit communities and groups centered around
various trending topics over time. Due to the prohibitive memory
and computational demands, individuals often process subgraph
snapshots sequentially within specific timeframes, instead of using
the whole giant graph. These snapshots naturally exhibit high in-
dependence, each associated with distinct trending topics, without
establishing connections to pre-existing subgraph snapshots. Con-
sequently, the resulting subgraphs are self-contained and disjoint
from previous graphs. Moreover, due to considerations such as
privacy preservation, memory limitations, or other practical con-
straints, (e.g. archived posts) [21, 29], historical data samples are
typically unavailable during new learning sessions, highlighting the
need to explore inductive GFSCIL. Furthermore, the transductive
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Transductive FSCIL
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(a) Transductive GFSCIL
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Figure 1: Transductive GFSCIL in Fig. 1(a) vs. our inductive
GFSCIL in Fig. 1(b). The classes are distinguished by dis-
tinct colors, with grey indicating unlabeled nodes for testing.
Graphs that emerged at distinct sessions are enclosed by
dashed lines. Notice that in transductive GFSCIL, the graph
gets larger with each session, and links among session sub-
graphs are required (red color). In contrast, inductive GFSCIL
does not store past subgraphs.

GFSCIL also stands in contrast to the well-established incremen-
tal learning scenarios in computer vision [21, 29] where one is
prohibited from making use of the past training data.

Thus, in this paper, we propose and investigate inductive GFS-
CIL depicted in Figure 1(b). Generally, the model is initially trained
with one base session containing a large portion of data in order
to pre-train well the backbone. Subsequently, multiple small-scale
incremental sessions are used for fine-tuning. In each incremental
session,𝑁 previously unseen classes with𝐾 labeled nodes (samples)
per class are given, and 𝑄 unlabeled nodes2. The task is to update
the model by 𝑁𝐾 labeled and 𝑄 unlabeled nodes from the unseen
subgraph and then perform classification on both old and novel
classes. Intuitively, the inductive setting assumes that the newly
emergent subgraph is semantically homogeneous and topologically
independent of subgraphs of the past sessions. Its node set, link
set, and label space are disjoint with antecedent graphs. However,
the node attribute space is shared and one hopes that topologi-
cal patterns among subgraphs share some similarities. Moreover,
the antecedent graphs are entirely unavailable for training. Un-
like transductive GFSCIL, which primarily tackles class imbalance,
inductive GFSCIL tackles the stability-plasticity dilemma, akin to
typical FSCIL in computer vision [2, 3, 38].

The stability-plasticity dilemma describes the challenge of gain-
ing the ability to classify novel classes and preserving the ability to
recognize old classes. Due to the inaccessibility of preceding sub-
graphs, fine-tuning the model on the novel subgraph might erase
the model’s memory (the so-called catastrophic forgetting), compro-
mising its recognition ability for old classes. Moreover, preserving

2The value of𝑄 may vary from session to session.

the recognition ability for old classes by limiting the model adap-
tion sacrifices its plasticity–the model will fail to learn/recognize
novel classes. Finally, the lack of a large amount of labeled nodes
of novel classes may lead to overfitting in the incremental learning
steps.

To copewith the aforementioned issues, we propose theTopology-
based class Augmentation and Prototype calibration (TAP)
method for the inductive GFSCIL problem. For the base session,
we propose a triple-branch multi-topology class augmentation de-
signed to preserve space for novel classes, thereby enhancing the
model’s generalization capacity. This approach allows the model
to simulate possible novel semantic and topological patterns, e.g.,
by dividing label space into subsets and the base graph into cor-
responding disjoint subgraphs, emulating the disjoint nature of
incremental sessions. In the incremental session, the model under-
goes fine-tuning for a few epochs to integrate the knowledge of
novel classes, with an exponential moving average applied then
to the past and current session models to mitigate catastrophic
forgetting. Concerning the potential bias arising from limited novel
samples, an iterative prototype calibration method has been pro-
posed to improve the representativeness of novel prototypes. Fur-
thermore, since fine-tuning the model results in feature distribution
drift—leading to deviation with older class prototypes—we intro-
duce a prototype shift method to restore the representativeness of
these older prototypes. Our contributions are summarized below:

i. We formulate the inductive GFSCIL setting for the node clas-
sification. By contrast to transductive GFSCIL, the inductive
setting deals with a more challenging practical scenario of
incremental learning without accessing the past graph data.

ii. To alleviate the stability-plasticity dilemma, we propose a
triple-branch multi-topology class augmentation, an iterative
prototype calibration, and a prototype shift update to enable
incremental learning of novel classes without compromising
the performance on old classes.

iii. We demonstrate the effectiveness of the proposed method on
four datasets in comparison to state-of-the-art baselines.

2 Related Works
Few-shot Class Incremental Learning (FSCIL). FSCIL, recently
introduced in the context of image classification, learns new tasks
with limited data while retaining high accuracy on old tasks without
accessing the past data. Tao et al. [21] proposed a neural gas network
that preserves the topology of the feature manifold for both old and
new classes. Subsequently, Zhao et al. [34] proposed a frequency-
aware distillation while Zhang et al. [28] applied a graph attention
network to adjust the final layer parameters to boost the accuracy.
Zhu et al. [38] developed a dynamic relation projection module to
refine prototypes and improve class separation.
Graph Few-shot Class Incremental Learning (GFSCIL). In
2022, FSCIL has been extended to node classification with a contin-
ually evolving graph. However, as new nodes emerge and expand
the class space, they also affect the graph topology. Thus, simply
applying existing computer vision FSCIL models to graphs fail
[2, 3, 13, 38]. Thus, Tan et al. [18] proposed a hierarchical attention
with pseudo-incremental training to estimate the importance of
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tasks. Lu et al. [11] enhanced the separation of classes by maintain-
ing the geometric class relationships. However, both these works
assume the transductive scenario to maintain access to nodes of
past sessions. Such a practical limitation inspires us to develop
inductive GFSCIL which does not require storing past nodes or
continuously enlarging the graph.
Graph Class Incremental Learning (GCIL). Transductive GF-
SCIL is similar to The GCIL, except that the latter models enjoy
a sufficient number of labeled samples for incremental learning
to avoid overfitting. To address catastrophic forgetting, Liu et al.
[8] proposed a topology-aware weight-preserving method to slow
down the update of pivotal parameters in incremental sessions.
Zhang et al. [31] proposed a hierarchical prototypical network,
which adaptively selects different feature extractors and prototypes
for different tasks. Wang et al. [23] developed a graph classification
model in contrast to node classification. Zhou et al. [35] and Liu et
al. [10] proposed to store and replay important nodes to combat the
forgetting problem. However, the above methods are not applicable
to inductive GFSCIL as they require a large number of samples
in incremental sessions (c.f . limited samples in GFSCIL) to avoid
overfitting. GCIL is also predominantly transductive.
Graph Few-shot Learning (GFSL). Similarly to GFSCIL, the GFSL
approaches generalize to novel tasks with limited labeled samples.
However, they do not handle the aspect of incrementally enlarging
the label space. To facilitate adaptation to novel tasks, Wu et al.
[26] proposed a dual augmentation with self-training and noise
injection. Liu et al. [9] proposed a meta-learning framework, using
scaling and shifting transformations to improve the model transfer-
ability. Wang et al. [25] proposed a triple-level adaptation module
to alleviate the variance of different meta-tasks. Tan et al. [19] and
Zhou et al. [36] proposed contrastive learning for few-shot node
classification. Zhang et al. [30] exploited multi-level node relations
to enable more transferrable node embeddings. Other contrastive
problems include traffic [15], generalized Laplacian eigenmaps [37],
and preventing the dimensional collapse in the Euclidean [32] and
hyperbolic spaces [33].

3 Preliminaries
3.1 Problem statement
Let D = {D0,D1, ...,D𝑚−1} be a sequence of 𝑚 homogeneous
graph subsets of data, where D𝑖 = {G𝑖 , C𝑖 }. Let G𝑖 = {X𝑖 ,A𝑖 }
be a graph with node features X𝑖 and the adjacent matrix A𝑖 .
Let C𝑖 be the class space of G𝑖 . Assume any two subsets of data,
D𝑖 ,D 𝑗 , 𝑖≠ 𝑗, have a disjoint label and graph space, i.e., C𝑖 ∩ C 𝑗 =∅
and G𝑖 ∩G 𝑗 =∅,∀𝑖≠ 𝑗 . Then, the model is trained on the sequential
dataset D with𝑚 separate learning sessions. We assume that D0

has a sufficient number of labeled nodes for training in the base
session to obtain a well pre-trained backbone. Subsequently, we
proceed with the incremental learning session 𝑡 . Each D𝑡 , 𝑡 > 0,
contains 𝑁 = |C𝑡 | novel classes3 while the base session with D0

has 𝐶≫𝑁 classes. We form 𝑁 -way 𝐾-shot support set S𝑡 , i.e., an
incremental session has 𝑁 classes and 𝐾 labeled nodes per class.
The unlabeled nodes form the query set Q𝑡 . The model can access

3For brevity, assume incremental sessions have the same number of novel classes, i.e.,
𝑁 = | C1 | = | C2 | = . . . = | C𝑚−1 |
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Figure 2: The triple-branch multi-topology class augmenta-
tion used during the base session training.

onlyD𝑡 in session 𝑡 but it has to perform node classification on the
union of subsets DT = D0 ∪ D1 ∪ ... ∪ D𝑡 over the encountered
class space CT = C0 ∪ C1 ∪ ... ∪ C𝑡 observed up to point 𝑡 ≤𝑚−1.

3.2 Prototype-based FSCIL Training Paradigm
The prototype-based FSCIL uses class-wise prototypes 𝝆 and the
cosine similarity 𝑠𝑖𝑚(·) to train the model and perform class predic-
tions. Let 𝑓𝜃 (·) be the feature extractor parameterized by 𝜃 . Then,
the prototype-based class prediction is given by:

𝑝 (𝑦 |x) = 𝑒
𝜏 (𝑠𝑖𝑚 (𝝆𝑦 ,𝑓𝜃 (x) ) )∑

𝑦′∈CT 𝑒
𝜏 (𝑠𝑖𝑚 (𝝆𝑦′ ,𝑓𝜃 (x) ) )

, (1)

where 𝜏 > 0 is the scaling factor. In the incremental session, 𝑡 ,
the prototypes for newly occurred classes are calculated over the
support set S𝑡 of D𝑡 :

𝝆𝑡𝑐 =

∑
(x,𝑦) ∈S𝑡 I[𝑦 = 𝑐] 𝑓𝜃 (x)∑
(x,𝑦) ∈S𝑡 I[𝑦 = 𝑐] , (2)

where 𝝆𝑡𝑐 is the prototype of class 𝑐 ∈C𝑡 at session 𝑡 , and I(·) is the
indicator function. The margin-based loss [14, 24, 39] is used for
training the model to obtain clear class boundaries:

L(x, 𝑦) = −𝑙𝑜𝑔 𝑒
𝜏 (𝑠𝑖𝑚 (𝝆𝑦 ,𝑓𝜃 (x) )−𝜅 )

𝑒
𝜏 (𝑠𝑖𝑚 (𝝆𝑦 ,𝑓𝜃 (x) )−𝜅 ) +∑𝑦′≠𝑦 𝑒

𝜏 (𝑠𝑖𝑚 (𝝆𝑦′ ,𝑓𝜃 (x) ) )
, (3)

where 𝜅 controls the class margin limiting the variance of node
embeddings concentrating around respective class prototypes. In-
tuitively, such margins help “reserve” space to accommodate novel
classes.

4 Methodology
Our proposed TAP performs inductive GFSCIL. It is composed of
three main components: (i) a Triple-branch Multi-topology Class
Augmentation (TMCA), (ii) an Iterative Prototype Calibration for
Novel classes (IPCN), and (iii) a Prototype Shift update for Old
classes (PSO). Fig. 2 illustrates TMCA used for training during
the base session with the goal of emulating the disjoint nature
of incremental sessions, leading to a good pre-trained backbone.
Fig.3 illustrates the incremental training framework that performs
finetuning on new tasks. Concurrently, IPCN and PSO collectively
contribute to calibrating and shifting the prototypes for novel and
old classes, respectively. Algorithm 1 details the training process.
Below we introduce further technical details of our TAP.
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4.1 Triple-branch Multi-topology Class
Augmentation

In inductive GFSCIL, each incremental session is likely to exhibit
distinct structure patterns. Thus, we ease the dependency of the
model on structural information by our proposed TMCA mecha-
nism which uses (i) the entire base graph (full topology), (ii) graph
nodes without links (topology-free), and (iii) subgraphs obtained by
splitting base classes into subsets and then severing links between
nodes belonging to different subsets (topology-varying). With em-
ulations of several graph topologies, we assume that each topology
should use its set of classes, e.g., we use 𝐶 class-prototypes per
branch and separate 3𝐶 base classes, helping the backbone adapt
to multiple topologies that the incremental sessions exhibit.
Topology-Free class Augmentation (TFA) helps our model al-
locate a portion of its “focus” to semantic characteristics alone,
helping class recognition independently of the graph structure.
Specifically, TFA uses node features without any changes and elim-
inates all the graph links of base classes by substituting the original
adjacent matrix with an identity matrix. Such an augmented graph
is given its own label space. Formally, the augmented graph is
represented as D0

◦ = {X0,A0
◦, C0◦ } where C0◦ = {𝑐 + |C0 | : 𝑐 ∈ C0}.

Topology-Varying class Augmentation (TVA) enables themodel
to encounter a diverse array of structural patterns and teaches the
model to extrapolate missing patterns beyond the base train set.
TVA emulates the topology characteristics of novel classes in incre-
mental sessions, preventing the model’s overfitting to topology pat-
terns of the base graph.We perform several TVA training epochs. At
the beginning of each TVA epoch, base classes C0 are randomly split
into 𝑚′ = ⌈𝐶/𝑁 ⌉ disjoint subsets

{
C0[0] , C

0
[1] , . . . , C

0
[𝑚′−1]

}
, each

comprising 𝑁 classes. Based on the class subsets, we also partition
the graph adjacentmatrixA0 intoA0

⋄ =
{
A0
[0] ,A

0
[1] , . . . ,A

0
[𝑚′−1]

}
.

Each partitioned adjacent matrix A0
[𝑖 ] is constrained to contain

only links formed within the corresponding class subset C0[𝑖 ] . Thus,
the links between subgraphs are removed. Also, a 10% random link
noise is injected into each A0

[𝑖 ] to increase the structural diversity
of subsets. The total number of unique arrangements of A0

[𝑖 ] is:

C𝑁| C0 | =
|C0 |!

𝑁 !( |C0 | − 𝑁 )!
, (4)

where |C0 | is the number of base classes.
Such augmented subgraphs are given their own label space. Let

Δ𝑐 = |C0 |+|C0◦ |. TVA-augmented graph becomesD0
⋄ = {X0,A0

⋄, C0⋄}
where C0⋄ =

{{
𝑐+Δ𝑐 : 𝑐 ∈C0[0]

}
, . . . ,

{
𝑐+Δ𝑐 : 𝑐 ∈C0[𝑚′−1]

}}
.

Given the generated class augmentations, the margin-based loss
from Eq. (3) is applied over both the original and augmented data
during the base session training:

L𝐵 =𝛼
∑︁

(x,𝑦) ∈D0

L(x, 𝑦)
|D0 |

+ 𝛼 ′
∑︁

(x,𝑦) ∈D0
◦

L(x, 𝑦)
|D0
◦ |
+ 𝛼 ′

∑︁
(x,𝑦) ∈D0

⋄

L(x, 𝑦)
|D0
⋄ |

, (5)

where 𝛼 is the weight balancing the contribution between the orig-
inal and the augmented graph data, and 𝛼 ′= (1−𝛼)/2.

GAT encoder 
!"#$%(')

GAT encoder 
!"#(')

Momentum 
update

GAT encoder 
!"#(')

Nearest mean classifier

Model 
adaptation and 
prototype 
calibration

Test

Share 
parameters

Node embeddings

Margin-based loss

IPCN

PSO

)*

)+,-

)*

Figure 3: The training framework for model adaptation and
prototype calibration in the incremental session.

4.2 Model Adaptation
Many approaches freeze their backbone and finetune the projec-
tion layer during incremental sessions [14, 39]. However, this is
insufficient for GFSCIL due to complex and polytropic structural
information with distinctive topology patterns among subgraphs
of base and novel classes.

As inductive GFSCIL has to deal with novel structural patterns,
we opt for updating the entire model in a momentum-based manner
on the support set of incremental session 𝑡 . Firstly, prototypes of
novel classes C𝑡 are computed according to Eq. (8) (see Sec. 4.3.1
for details). The novel prototypes are then merged with all previous
prototypes, denoted as PT = PT−1 ∪ {𝝆𝑐 : 𝑐 ∈C𝑡 }. Subsequently,
the encoder is trained on the support set S𝑡 of D𝑡 and the total
label space CT over sessions 0, . . . , 𝑡 as:

L𝑁 =
1
|S𝑡 |

∑︁
(x,𝑦) ∈S𝑡

L(x, 𝑦) . (6)

Note that as the number of labeled nodes of novel classes is
low, causing overfitting, we perform only a few finetuning epochs.
At the end of each session, we apply the Exponential Moving Av-
erage (EMA) between past and current model parameters to pre-
vent catastrophic forgetting. The final backbone parameters 𝜃𝑡 are
𝜃𝑡 ← 𝛽 𝜃𝑡−1 + (1 − 𝛽) 𝜃𝑡 , where 𝜃𝑡−1 and 𝜃𝑡 are model parameters
from session 𝑡−1 and session 𝑡 (after finetuning). 𝛽 controls EMA.

4.3 Prototype Calibration
4.3.1 Iterative Prototype Calibration for Novel classes (IPCN). In
the incremental session, due to the low number of nodes of the sup-
port set, the generated prototypes are not representative enough,
leading to unsatisfactory performance. Thus, we propose an iter-
ative prototype calibration, which uses the query set to calibrate
novel prototypes iteratively (akin to k-means). Specifically, at each
step of the incremental training, we use the latest encoder 𝑓

𝜃𝑡
(·) to

generate probabilities of x𝑖 belonging to 𝝆𝑐 for the query nodes Q𝑡
of novel classes:

𝑝𝑐 (x𝑖 ) =
𝑒𝜏 𝑠𝑖𝑚 (𝑓𝜃𝑡 (x𝑖 ),𝝆𝑐 )∑

𝑐′∈CT 𝑒
𝜏 𝑠𝑖𝑚 (𝑓

𝜃𝑡
(x𝑖 ),𝝆𝑐′ )

. (7)
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Probabilities 𝑝𝑐 (x𝑖 ) are used to form pseudo-labeled query sets Q̂𝑡𝑐
used in the prototype calibration step:

�̂�𝑡𝑐 =

∑
x𝑖 ∈S𝑡𝑐 𝑓𝜃𝑡 (x𝑖 ) +

∑
x𝑗 ∈ Q̂𝑡

𝑐
𝑝𝑐 (x𝑗 ) 𝑓𝜃𝑡 (x𝑗 )∑

x𝑖′ ∈S𝑡𝑐 1 +
∑
x𝑗 ′ ∈ Q̂𝑡

𝑐
𝑝𝑐 (x𝑗 ′ )

, (8)

where �̂�𝑡𝑐 is the calibrated prototype for class 𝑐 . The following steps
are repeated few times: (i) Eq. (7), (ii) Eq. (8), (iii) 𝝆𝑐← �̂�𝑡𝑐 ,∀𝑐 ∈ C𝑡 .
We perform 2 iterations of these steps.

4.3.2 Prototype Shift for Old classes (PSO). Due to evolving param-
eter space from 𝑓𝜃𝑡−1 to 𝑓𝜃𝑡 , the feature distribution suffers from
the drift. The prototypes of old classes do not represent old classes
well when parameters 𝜃𝑡 change. Thus, we account for the drift:

𝝆𝑡𝑐 = 𝝆𝑡−1𝑐 + Δ𝝆𝑡𝑐 ,∀𝑐 ∈ CT−1, (9)

where CT−1 contains all classes encountered before session 𝑡 . Δ𝝆𝑡𝑐
is the prototype drift vector which we estimate using the current
support set S𝑡 as the nodes of past sessions are unavailable. We as-
sume the feature spaces of novel/previous tasks are not completely
semantically disjoint. Thus, we approximate the prototype drift
Δ𝝆𝑡𝑐 by the feature changes Δ𝑓𝜃𝑡−1→𝜃𝑡 (x)= 𝑓𝜃𝑡 (x)− 𝑓𝜃𝑡−1 (x), x∈S𝑡
and the corresponding empirical conditional density distribution
𝑝 (𝝆𝑡−1𝑐 |x) w.r.t. 𝝆𝑡−1𝑐 :

Δ𝝆𝑡𝑐 =
∑︁
x∈S𝑡

𝑝 (𝝆𝑡−1𝑐 |x)Δ𝑓𝜃𝑡−1→𝜃𝑡 (x) . (10)

The empirical conditional density distribution 𝑝 (𝝆𝑡−1𝑐 |x) w.r.t. 𝝆𝑡−1𝑐

is given as:
𝑝 (𝝆𝑡−1𝑐 |x) =

𝜑 (x, 𝝆𝑡−1𝑐 )∑
x′∈S𝑡 𝜑 (x′, 𝝆𝑡−1𝑐 )

, (11)

where 𝜑 (x, 𝝆𝑡−1𝑐 )=𝑒−
1

2𝜎2 ∥ 𝑓𝜃𝑡−1 (x)−𝝆𝑡−1
𝑐 ∥22 represents the Gaussian

RBF similarity between the old prototype 𝝆𝑡−1𝑐 and the node feature
𝑓𝜃𝑡−1 (x) generated by the previous encoder given a bandwidth
hyperparameter 𝜎 > 0. The PSO shifts the old prototypes along the
direction of feature change in the neighborhood of prototypes.

5 Experiments
5.1 Experimental Setup
Datasets. To validate our proposed TAP method, we repurpose the
existing common GNN datasets. As we have to perform incremental
learning on several subgraphs with nodes of disjoint label space, we
choose datasets featuring a substantial number of class categories,
including Amazon_clothing[12], DBLP[20], Cora_full[1], and Ogbn-
arxiv[5]. The dataset statistics are summarized in Table 1.

Based on our problem formulation, we split datasets according
to the base classes, C0, and novel classes, C𝑡 , 𝑡 > 0, subdivided into
9 incremental learning tasks, each formulated as 𝑁 -way 𝐾-shot
few-shot learning, as specified in Table 1. Amazon_clothing and
Cora_full are re-purposed into the 5-way 5-shot setting, Ogbn-arxiv
into the 3-way 5-shot setting, while DBLP into the 10-way 5-shot
setting. The remaining classes constitute the base classes, which
are split into train (80%) and test (20%) sets.

We subsequently restructure the graph adjacency matrix into
adjacency submatrices for incremental sessions. As nodes of sub-
graphs used in previous sessions are not supposed to be accessed in
a new incremental session, we remove the links between subgraphs

Algorithm 1: Training with our TAP.
Input: A sequence of graph data subsets

D = {D0,D1, ...,D𝑚−1}, GNN encoder 𝑓𝜃 (·),
hyperparameters 𝛼 , 𝛽 , 𝜎 , 𝜏, 𝜅. Epochs for base and
incremental training 𝐸𝑏 , 𝐸𝑛 .

Output: Predicted labels for the query nodes.
1 Initialized network parameters 𝜃0.
/* Base training session on D0. */

2 for 𝑒𝑝𝑜𝑐ℎ = 1, . . . , 𝐸𝑏 do
3 Apply topology-free augmentation (TFA in Sec. 4.1).
4 Get𝑚′= ⌈𝐶/𝑁 ⌉ topology-varying aug. partitions (TVA

in Sec. 4.1).
5 Update the GNN model 𝑓𝜃 (·) according to Eq. (5).
/*Incremental train. sessions on {D1, . . . ,D𝑚−1}*/

6 for 𝑡 = 1, . . . ,𝑚 − 1 do
/* Model adaptation (incremental session 𝑡).*/

7 for 𝑒𝑝𝑜𝑐ℎ = 1, . . . , 𝐸𝑛 do
8 Generate node embeddings and class prototypes

{𝝆𝑐 : 𝑐 ∈C𝑡 } for novel data D𝑡 as Eq. (2).
9 Perform Iterative Prototype Calibration for Novel

classes (IPCN): iterate 2x over (i) Eq. (7), (ii) Eq. (8),
(iii) 𝝆𝑐← �̂�𝑡𝑐 ,∀𝑐 ∈ C𝑡 .

10 Update the GNN model 𝑓𝜃𝑡 (·) according to Eq. (6).

11 Apply EMA 𝜃𝑡 ← 𝛽 𝜃𝑡−1 + (1 − 𝛽) 𝜃𝑡 from Sec. 4.2.
12 Prototype Shift for Old classes (PSO) as in Eq. (9).

/* Testing stage. */

13 Predict labels for all query nodes QT in DT across all
classes observed to-date, given by CT .

Table 1: Details of Four Benchmark Datasets.

Dataset Amazon_clothing DBLP Cora_full Ogbn-arxiv

Nodes 24,919 40,672 19,793 169,343
Edges 91,680 288,270 65,311 1,116,243

Features 9,034 7,202 8,710 128
Labels 77 137 70 40

Base 32 47 25 13
Novel 45 90 45 27

N-way K-shot (5, 5) (10, 5) (5, 5) (3, 5)
Sessions 10 10 10 10

and retain graph links that reside within the same task. Thus, the
graph structure of each task attains autonomy, devoid of any inter-
dependence with other tasks (no overlap of node sets, link sets, or
label spaces between tasks).
Baseline methods. Given the absence of existing methods tai-
lored for the inductive GFSCIL, we adapt some representative meth-
ods from alternative domains as baselines, including CLOM [39],
LCWOF [7], SAVC [17], NC-FSCIL [27]. We also adapt the trans-
ductive GFSCIL method Geometer [11] to our setting. It should
be noted that since Geometer [11] relies on access to the entire
data graph (inclusive of the nodes of past tasks), we disable the
component of past sample retraining for a fair comparison. What’s
more, a TAP variant and two widely-used FSCIL strategies have
also been applied, establishing another three baselines as follows:
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i. TAP-IPCN: It disables the prototype calibration for novel classes
to evaluate the performance of TAP without the usage of unla-
beled novel nodes.

ii. GAT-finetune: It applies GAT as the backbonewith the prototype-
based classification method. In incremental learning, the entire
network is finetuned using the support set of novel classes.

iii. GAT-frozen: It also utilizes the GAT backbone. However, after
the base training, the entiremodel is frozen and directly applied
to query tests without further fine-tuning.

To ensure a fair comparison, we apply the same GAT backbone and
hyperparameters in all comparisons.
Implementation details. Our TAP method uses a 2-layer GAT
as the backbone with the hidden layer output of size 16, ReLU
activation, weight decay of 0.0005, learning rate of 0.01, and dropout
rate of 0.5. The number of attention heads is set to 12. We set 𝛼 =0.7.
The momentumweight 𝛽 =0.95. We set 5 steps for model finetuning.
The iterations for IPCN are set as 2, and the bandwidth 𝜎 =1.0 for
PSO. The scaling factor 𝜏 = 15 and margin 𝜅 = 0.1 for the margin-
based loss. Hyperparameters were selected on Cora_full according
to the last session accuracy. We withheld 30% of query nodes for
validation and used the remaining query nodes for testing. We did
not tune hyperparameters on the remaining datasets.
5.2 Performance Comparisons
Table 2 shows the experimental results for all the baselines over
10 sessions, in terms of their prediction accuracy at each session,
the average accuracy (A/Acc.) across 10 sessions, and the corre-
sponding performance drop (PD) between sessions 0 and 9. All the
experiments are repeated 10 times with different random seeds. The
results of the best-performing method are highlighted with bold,
and the second-best baseline is underlined. Overall, TAP outper-
forms baselines by a large margin over all the datasets. Specifically,
in the base session, most methods start from similar performances.
Although the class augmentation method triples the label space
for the base session, thereby increasing training complexity, TAP
still manages to obtain outstanding results. With the progress of
incremental sessions, TAP shows strengthening performance and
exhibits growing improvements over other baselines. Concerning
the last session accuracy, TAP achieves improvements of 5.7%, 1.0%,
6.5%, and 3.1% on Amazon_clothing, DBLP, Cora_full and Ogbn-
arxiv datasets, respectively, compared with the best baselines. These
advantages are further affirmed by the performance of A/Acc. and
the PD across the four datasets. For instance, TAP has obtained
a superior performance of 0.780 and 0.264 on Amazon_clothing,
compared with 0.759 and 0.319 of the best baseline in terms of
A/Acc. and PD, respectively. In addition, despite minor declines
relative to TAP, TAP-IPCN still surpasses all baselines with im-
provements of 2.9%, 0.4%, 3.0%, 2.1% on Amazon_clothing, DBLP,
Cora_full and Ogbn-arxiv datasets, respectively, compared with the
best baselines. This demonstrates that TAP can continue to achieve
remarkable performance with minimal dependence on unlabeled
nodes as incremental sessions progress.

Furthermore, a deeper examination of baseline performance
reveals noteworthy insights. Firstly, GAT-frozen demonstrates a
competitive performance among other baselines, supporting the
effectiveness of the incremental-frozen strategy in preservingmodel
capability as novel classes emerge. Secondly, NC-FSCIL performs

even less favorably than GAT-frozen. This aligns with expectations,
as solely fine-tuning the last projection layer instead of the feature
extractor is ineffective in assimilating novel structural knowledge.
GAT-finetune degrades recognition ability on old classes with a
significant drop in the last session, diverging notably from the
FSCIL methods observed in the image domain.

5.3 Validation on N-way one-shot Setting
To validate the performance of TAP under extreme label constraints,
we present experimental results for the N-way 1-shot setting, includ-
ing 3-way 1-shot on Ogbn-arxiv, 5-way 1-shot on Amazon_clothing
and Cora_full, as well as 10-way 1-shot on DBLP. These results are
summarized in Figure 4, with specific details provided in Appen-
dix ??. Overall, TAP consistently outperforms all other methods
across the datasets, with its performance curve distinctly higher
than the others. It demonstrates the slowest performance decline as
incremental learning and maintaining the highest accuracy in the
last session. In contrast, GAT-finetune and NC-FSCIL perform the
worst, likely due to their inability to address the forgetting problem
in incremental training. The rest perform at a similar level, but
none can match TAP’s performance. Notably, TAP’s advantages
become more pronounced in the later sessions, benefiting from
prototype calibration, which mitigates the issue of overfitting and
forgetting. The performance aligns with that observed in Table 2,
further highlighting TAP’s strong robustness against the overfitting
risks associated with extreme label sparsity.

5.4 Ablation Study
Below we ascertain the efficacy of individual components of TAP
by systematically removing each component, whose results are
presented in Table 3. The notation "TAP-*" refers to the ablation
where the component "*" is removed from TAP, as specified below:
i. TAP-TMCA: It removes the whole class augmentation method,
including TFA and TVA.

ii. TAP-TFA: It removes the topology-free augmentation method.
iii. TAP-TVA: It removes the topology-varying augmentationmethod.
iv. TAP-PSO: It removes the prototype shift for old classes.
v. TAP-IPCN: It removes the prototype calibration for new classes.
vi. TAP-CE: It replaces the margin-based loss with the cross-

entropy loss, equivalent to specifying 𝜅=0 for margin.
vii. TAP-EMA: It removes the exponential moving average opera-

tion between the novel and old models.
viii. TAP_FProj: It refers to the model where the GAT backbone is

frozen, and only an appended projection layer is fine-tuned.
When comparing the last session accuracy with TAP, we observe
that removing TMCA (i.e., TVA + TFA), TVA, and TFA results in a
performance drop of 1.8%, 1.2%, and 1.4%, respectively. The removal
of IPCN and PSO, which disables prototype calibration for novel and
old classes, leads to performance degradations of 2.4% and 3.6%, re-
spectively. This highlights the importance of prototype calibration
as incremental learning progresses. The utility of EMA is to pre-
vent the model from catastrophically forgetting previously obtained
knowledge after model fine-tuning. Thus removing EMA can lead
to a collapsed model. Additionally, the performance of TAP_FProj
also drops significantly (0.648 vs. 0.668), underscoring the need to
update the entire model, rather than just the appended projection
layer, to accommodate the evolving graph structure—unlike FSCIL
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Table 2: Overall performance comparison w.r.t. different sessions. Performance Drop (PD↓) is measured between the base
session and the last session (the smaller the drop the better). In each session, we evaluate also query nodes from former sessions.
The improvement (Impr.↑) is measured by the difference of the last session accuracies between TAP and other baselines.

Amazon_clothing (5-way 5-shot)
Method Sessions

0 1 2 3 4 5 6 7 8 9 A/Acc. PD ↓ Impr. ↑
GAT-finetune 0.930 0.121 0.087 0.103 0.087 0.088 0.092 0.069 0.058 0.064 0.170 0.867 0.604
GAT-frozen 0.931 0.861 0.817 0.756 0.721 0.685 0.656 0.636 0.617 0.591 0.727 0.340 0.077
CLOM [39] 0.942 0.879 0.834 0.775 0.742 0.702 0.670 0.648 0.624 0.595 0.742 0.343 0.073
LCWOF [7] 0.930 0.863 0.817 0.755 0.719 0.681 0.650 0.624 0.604 0.578 0.722 0.352 0.090
SAVC [17] 0.934 0.888 0.850 0.802 0.766 0.727 0.693 0.666 0.643 0.611 0.759 0.325 0.057
NC-FSCIL [27] 0.840 0.319 0.442 0.475 0.492 0.449 0.480 0.414 0.405 0.409 0.473 0.431 0.259
Geometer [11] 0.934 0.879 0.835 0.779 0.743 0.705 0.682 0.662 0.639 0.615 0.747 0.319 0.053

TAP-IPCN 0.935 0.876 0.834 0.783 0.767 0.734 0.711 0.691 0.669 0.644 0.764 0.291 0.024
TAP 0.935 0.889 0.851 0.804 0.775 0.745 0.725 0.708 0.692 0.668 0.780 0.267 -

DBLP (10-way 5-shot)
Method Sessions

0 1 2 3 4 5 6 7 8 9 A/Acc. PD ↓ Impr. ↑
GAT-finetune 0.637 0.051 0.054 0.049 0.044 0.038 0.036 0.035 0.031 0.033 0.101 0.603 0.470
GAT-frozen 0.633 0.605 0.582 0.559 0.536 0.514 0.498 0.482 0.467 0.455 0.533 0.178 0.048
CLOM [39] 0.644 0.614 0.589 0.565 0.541 0.519 0.502 0.486 0.469 0.457 0.538 0.187 0.046
LCWOF [7] 0.631 0.602 0.578 0.555 0.532 0.509 0.493 0.477 0.461 0.449 0.529 0.182 0.054
SAVC [17] 0.624 0.623 0.611 0.593 0.574 0.555 0.539 0.524 0.507 0.493 0.564 0.130 0.010
NC-FSCIL [27] 0.427 0.250 0.237 0.219 0.207 0.183 0.183 0.169 0.167 0.159 0.220 0.268 0.344
Geometer [11] 0.640 0.625 0.599 0.576 0.553 0.529 0.510 0.495 0.478 0.466 0.547 0.174 0.037

TAP-IPCN 0.640 0.624 0.607 0.589 0.571 0.552 0.535 0.522 0.508 0.497 0.564 0.140 0.006
TAP 0.641 0.631 0.612 0.594 0.577 0.557 0.540 0.525 0.510 0.503 0.569 0.138 -

Cora_full (5-way 5-shot)
Method Sessions

0 1 2 3 4 5 6 7 8 9 A/Acc. PD ↓ Impr. ↑
GAT-finetune 0.941 0.121 0.093 0.089 0.074 0.056 0.055 0.041 0.047 0.049 0.157 0.892 0.466
GAT-frozen 0.941 0.823 0.740 0.675 0.614 0.569 0.530 0.501 0.471 0.445 0.631 0.496 0.070
CLOM [39] 0.945 0.845 0.763 0.700 0.638 0.592 0.552 0.522 0.491 0.464 0.651 0.481 0.051
LCWOF [7] 0.940 0.814 0.726 0.662 0.601 0.558 0.517 0.487 0.458 0.431 0.619 0.509 0.084
SAVC [17] 0.942 0.835 0.755 0.687 0.625 0.579 0.539 0.509 0.478 0.450 0.640 0.492 0.065
NC-FSCIL [27] 0.891 0.623 0.559 0.499 0.419 0.388 0.345 0.335 0.325 0.291 0.468 0.599 0.224
Geometer [11] 0.942 0.835 0.738 0.677 0.613 0.575 0.534 0.502 0.479 0.447 0.634 0.499 0.068

TAP-IPCN 0.943 0.848 0.771 0.716 0.658 0.618 0.579 0.548 0.524 0.494 0.670 0.449 0.019
TAP 0.944 0.853 0.782 0.725 0.673 0.634 0.598 0.570 0.541 0.515 0.683 0.429 -

Ogbn-arxiv (3-way 5-shot)
Method Sessions

0 1 2 3 4 5 6 7 8 9 A/Acc. PD ↓ Impr. ↑
GAT-finetune 0.625 0.104 0.085 0.075 0.082 0.064 0.057 0.061 0.059 0.052 0.126 0.573 0.336
GAT-frozen 0.640 0.546 0.509 0.472 0.454 0.428 0.407 0.380 0.370 0.330 0.454 0.310 0.058
CLOM [39] 0.638 0.574 0.539 0.476 0.465 0.429 0.409 0.379 0.367 0.342 0.464 0.296 0.046
LCWOF [7] 0.647 0.579 0.522 0.481 0.456 0.444 0.423 0.395 0.383 0.351 0.468 0.296 0.037
SAVC [17] 0.643 0.550 0.511 0.475 0.455 0.431 0.413 0.392 0.386 0.347 0.460 0.296 0.041
NC-FSCIL [27] 0.639 0.145 0.099 0.099 0.126 0.151 0.160 0.161 0.150 0.159 0.189 0.480 0.229
Geometer [11] 0.651 0.568 0.520 0.478 0.456 0.437 0.424 0.394 0.384 0.352 0.466 0.299 0.036

TAP-IPCN 0.669 0.589 0.555 0.515 0.481 0.452 0.440 0.407 0.396 0.373 0.488 0.296 0.015
TAP 0.670 0.625 0.590 0.547 0.505 0.472 0.460 0.421 0.408 0.388 0.509 0.282 -

in the image domain, where structural information is absent. Fur-
thermore, we also provide extra ablation studies on multiple class

augmentation variants, please refer to Appendix ?? for more
details.

Ren
高亮
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Figure 4: Performance comparison on the N-way 1-shot setting over different datasets.

Table 3: Ablation study on various TAP variants.

Amazon_clothing (5-way 5-shot)
Method Sessions

0 1 2 3 4 5 6 7 8 9 Impr. ↑
GAT-frozen 0.931 0.861 0.817 0.756 0.721 0.685 0.656 0.636 0.617 0.591 0.077
TAP-TMCA 0.944 0.887 0.8510 0.797 0.765 0.740 0.716 0.698 0.672 0.650 0.018
TAP-TVA 0.935 0.887 0.849 0.798 0.769 0.742 0.722 0.701 0.681 0.656 0.012
TAP-TFA 0.933 0.879 0.842 0.791 0.763 0.729 0.706 0.685 0.667 0.654 0.014
TAP-IPCN 0.935 0.876 0.834 0.783 0.767 0.734 0.711 0.691 0.669 0.644 0.024
TAP-PSO 0.935 0.879 0.846 0.802 0.768 0.739 0.713 0.689 0.657 0.632 0.036
TAP-EMA 0.934 0.667 0.377 0.271 0.223 0.196 0.171 0.143 0.132 0.106 0.562
TAP_FProj 0.896 0.882 0.842 0.793 0.764 0.729 0.709 0.687 0.667 0.648 0.020
TAP 0.935 0.889 0.851 0.804 0.775 0.745 0.725 0.708 0.692 0.668 -

(a) PSO (b) IPCN

Figure 5: The visualization of prototype calibration for old
and novel classes on Amazon_clothing, where the empty and
colored stars indicate prototypes before and after calibration.
The dotted lines denote trajectories of prototypemovements.

5.5 Visualization of Prototype Calibration
Fig. 5 visualizes prototype calibration for old and novel classes,
respectively. The empty and colored stars indicate the prototypes
before and after calibration, and their moving trajectories are de-
picted by dotted lines. Fig. 5(a) presents the calibrating result of
PSO for 5 base classes, illustrating the refinement of stored pro-
totypes through estimated prototype shift. Notably, most original
prototypes initially reside in the marginal areas of their respective
classes, exhibiting substantial drifts from their class centroids. The
PSO pulls the prototypes towards denser areas, generating more
representative prototypes. Fig. 5(b) shows the prototype adjust-
ment of 5 novel classes induced by IPCN, which relocates those
prototypes closer to their class centroids, reducing position vari-
ability within their class communities, and thus improving their
representativeness.

5.6 Parameter Analysis
Impact of𝛼 .The parameter𝛼 regulates the influence of the topology-
free and topology-varying class augmentations as described in Eq.

(a) 𝛼 (b) 𝛽

Figure 6: The impact of 𝛼 and 𝛽 on the last session accuracy
on Amazon_clothing over all, base and novel classes.

(5). A larger value of 𝛼 indicates a more dominant role of aug-
mented data in base training. Fig. 6(a) presents the sensitivity anal-
ysis results of 𝛼 on Amazon_clothing dataset. The three histograms
illustrate the accuracy of the last session across all encountered
classes, base classes, and novel classes, respectively. The overall
performance on all classes indicates a preference for a relatively
larger value of 𝛼 as opposed to smaller ones. The method achieves
its peak performance when 𝛼 ∈ [0.7, 0.8], gradually diminishing
as 𝛼 deviates away from this range. Examining the performance
changes on base and novel classes, a decline in 𝛼 from 0.9 to 0.2
results in a continuous performance degradation in base classes.
Conversely, novel classes initially experience performance rises,
followed by stabilization in the later period. This observation un-
derscores the efficacy of our class augmentation in enhancing the
model’s generalizability to unseen classes and structural patterns.
Impact of 𝛽 . The parameter 𝛽 governs the momentum-based bal-
ance between the contribution of the previous and the latest model
parameters. The sensitivity analysis of 𝛽 in Fig.6(b) shows that TAP
achieves optimal performance for 𝛽 ∈ [0.9, 0.95], but experiences
performance decline outside of this range. Specifically, for 𝛽 > 0.95,
the model struggles to assimilate sufficient novel knowledge from
model fine-tuning, resulting in unsatisfactory improvement, as ev-
idenced by declining performance on novel classes. Conversely,
when 𝛽 < 0.9, the model suffers from catastrophic forgetting, lead-
ing to a significant performance drop on the base classes.
Impact of 𝜎 . The parameter 𝜎 denotes the bandwidth as described
below Eq. (11). It governs the weight distribution for the prototype
shift estimation. Fig.7(a) shows that a decrease in 𝜎 from 1.0 to
0.5 does not cause notable performance change. However, once it
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(a) (b)

Figure 7: The impact of 𝜎 on the model performance over the
Amazon_clothing dataset. Fig. 7(a): The impact of 𝜎 on the
accuracy of the last session. FIg. 7(b): The prototype change
on old classes when 𝜎 =0.25.

descends to 0.25 or less, the performance drops as for small 𝜎 , all
weights tend to approach zero, rendering the ineffective calibration.
This is evident in Fig. 7(b), where the adjusted prototypes stay close
to the original prototypes after calibration.

6 Conclusions
In this paper, the inductive GFSCIL problem is formulated and ef-
fectively addressed with our proposed TAP model. The primary
challenge of inductive GFSCIL stems from issues of catastrophic for-
getting and overfitting, arising due to the unavailability of data from
previous sessions and the extreme scarcity of labeled samples. To
this end, we have introduced topology-free and topology-varying
class augmentations for the base training, emulating the disjoint
topology of subgraphs arriving in incremental sessions. We have
proposed an iterative prototype calibration for refining novel pro-
totypes during incremental training to reduce their variance and
enhance their representativeness. Furthermore, to address the in-
consistency between node embeddings and stored old prototypes
resulting from model fine-tuning, we have introduced a prototype
shift to recalibrate the old prototypes, effectively accounting for
the feature distribution drift. Finally, we have substantiated the ef-
fectiveness of our TAP through extensive experiments, comparing
its performance to state-of-the-art baselines across four datasets.

Acknowledgments
This work was partially funded by CSIRO’s Reinvent Science and
CSIRO’s Data61 Science Digital. The authors gratefully acknowl-
edge continued support from the CSIRO’s Data61 Embodied AI
Cluster. This work was also supported in part by the 2024 Gansu
Province Key Talent Program under Grant No.2024RCXM22.

References
[1] Aleksandar Bojchevski and Stephan Günnemann. 2017. Deep gaussian embed-

ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[2] Ali Cheraghian, Shafin Rahman, Pengfei Fang, Soumava Kumar Roy, Lars Peters-
son, and Mehrtash Harandi. 2021. Semantic-aware knowledge distillation for
few-shot class-incremental learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2534–2543.

[3] Zhixiang Chi, Li Gu, Huan Liu, Yang Wang, Yuanhao Yu, and Jin Tang. 2022.
Metafscil: A meta-learning approach for few-shot class incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
14166–14175.

[4] WilliamHamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[5] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[6] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. The International Conference on Learning Representations
(2016).

[7] Anna Kukleva, Hilde Kuehne, and Bernt Schiele. 2021. Generalized and incre-
mental few-shot learning by explicit learning and calibration without forgetting.
In Proceedings of the IEEE/CVF international conference on computer vision. 9020–
9029.

[8] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 8653–8661.

[9] Yonghao Liu, Mengyu Li, Ximing Li, Fausto Giunchiglia, Xiaoyue Feng, and
Renchu Guan. 2022. Few-shot node classification on attributed networks with
graphmeta-learning. In Proceedings of the 45th international ACM SIGIR conference
on research and development in information retrieval. 471–481.

[10] Yilun Liu, Ruihong Qiu, and Zi Huang. 2023. Cat: Balanced continual graph
learning with graph condensation. arXiv preprint arXiv:2309.09455 (2023).

[11] Bin Lu, Xiaoying Gan, Lina Yang, Weinan Zhang, Luoyi Fu, and Xinbing Wang.
2022. Geometer: Graph few-shot class-incremental learning via prototype rep-
resentation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 1152–1161.

[12] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 785–
794.

[13] Can Peng, Piotr Koniusz, Kaiyu Guo, Brian C. Lovell, and Peyman Moghadam.
2024. Multivariate prototype representation for domain-generalized incremental
learning. Computer Vision and Image Understanding (2024), 104215.

[14] Can Peng, Kun Zhao, TianrenWang, Meng Li, and Brian C Lovell. 2022. Few-shot
class-incremental learning from an open-set perspective. In European Conference
on Computer Vision. Springer, 382–397.

[15] Arian Prabowo, Hao Xue, Wei Shao, Piotr Koniusz, and Flora D. Salim. 2024.
Traffic forecasting on new roads using spatial contrastive pre-training (SCPT).
Data Min. Knowl. Discov. 38, 3 (2024), 913–937. https://doi.org/10.1007/S10618-
023-00982-0

[16] Kaushik Roy, Christian Simon, Peyman Moghadam, and Mehrtash Harandi. 2023.
Subspace distillation for continual learning. Neural Networks 167 (2023), 65–79.

[17] Zeyin Song, Yifan Zhao, Yujun Shi, Peixi Peng, Li Yuan, and Yonghong Tian.
2023. Learning with Fantasy: Semantic-Aware Virtual Contrastive Constraint for
Few-Shot Class-Incremental Learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 24183–24192.

[18] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot
class-incremental learning. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 987–996.

[19] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Supervised Graph
Contrastive Learning for Few-Shot Node Classification. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. Springer,
394–411.

[20] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. 990–998.

[21] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and
Yihong Gong. 2020. Few-shot class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12183–12192.

[22] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. The International
Conference on Learning Representations (2017).

[23] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong
graph learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 13719–13728.

[24] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. 2018. Cosface: Large margin cosine loss for deep face
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 5265–5274.

[25] Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. 2022. Task-
adaptive few-shot node classification. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 1910–1919.

[26] Zongqian Wu, Peng Zhou, Guoqiu Wen, Yingying Wan, Junbo Ma, Debo Cheng,
and Xiaofeng Zhu. 2022. Information Augmentation for Few-shot Node Classifi-
cation. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence. 3601–3607.

[27] Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng
Tao. 2023. Neural collapse inspired feature-classifier alignment for few-shot class
incremental learning. The International Conference on Learning Representations
(2023).

https://doi.org/10.1007/S10618-023-00982-0
https://doi.org/10.1007/S10618-023-00982-0


WSDM ’25, March 10th-14th, 2025, Hannover, Germany Yayong Li, Peyman Moghadam, Can Peng, Nan Ye, and Piotr Koniusz

[28] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu.
2021. Few-shot incremental learning with continually evolved classifiers. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
12455–12464.

[29] Jinghua Zhang, Li Liu, Olli Silven, Matti Pietikäinen, and Dewen Hu. 2023. Few-
shot Class-incremental Learning: A Survey. arXiv preprint arXiv:2308.06764
(2023).

[30] Lingling Zhang, Shaowei Wang, Jun Liu, Qika Lin, Xiaojun Chang, Yaqiang Wu,
and Qinghua Zheng. 2022. Mul-grn: multi-level graph relation network for few-
shot node classification. IEEE Transactions on Knowledge and Data Engineering
(2022).

[31] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Hierarchical prototype
networks for continual graph representation learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2022), 4622–4636.

[32] Yifei Zhang, Hao Zhu, Zixing Song, Yankai Chen, Xinyu Fu, Ziqiao Meng, Piotr
Koniusz, and Irwin King. 2024. Geometric View of Soft Decorrelation in Self-
Supervised Learning. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (Barcelona, Spain) (KDD ’24). Association
for Computing Machinery, New York, NY, USA, 4338–4349. https://doi.org/10.
1145/3637528.3671914

[33] Yifei Zhang, Hao Zhu, Menglin Yang, Jiahong Liu, Rex Ying, Irwin King, and Piotr
Koniusz. 2023. Understanding and Mitigating Hyperbolic Dimensional Collapse
in Graph Contrastive Learning. arXiv:2310.18209 [cs.LG]

[34] Hanbin Zhao, Yongjian Fu, Mintong Kang, Qi Tian, Fei Wu, and Xi Li. 2021.
Mgsvf: Multi-grained slow vs. fast framework for few-shot class-incremental
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[35] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph
neural networks with experience replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714–4722.

[36] Yuchen Zhou, Yanan Cao, Yanmin Shang, Chuan Zhou, Chuancheng Song,
Fengzhao Shi, and Qian Li. 2022. Task-level Relations Modelling for Graph
Meta-learning. In 2022 IEEE International Conference on Data Mining (ICDM).
IEEE, 813–822.

[37] Hao Zhu and Piotr Koniusz. 2024. Generalized laplacian eigenmaps. In Proceedings
of the 36th International Conference on Neural Information Processing Systems (New
Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article
2232, 15 pages.

[38] Kai Zhu, Yang Cao, Wei Zhai, Jie Cheng, and Zheng-Jun Zha. 2021. Self-promoted
prototype refinement for few-shot class-incremental learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 6801–6810.

[39] Yixiong Zou, Shanghang Zhang, Yuhua Li, and Ruixuan Li. 2022. Margin-based
few-shot class-incremental learning with class-level overfitting mitigation. Ad-
vances in neural information processing systems 35 (2022), 27267–27279.

https://doi.org/10.1145/3637528.3671914
https://doi.org/10.1145/3637528.3671914
https://arxiv.org/abs/2310.18209

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Problem statement
	3.2 Prototype-based FSCIL Training Paradigm

	4 Methodology
	4.1 Triple-branch Multi-topology Class Augmentation
	4.2 Model Adaptation
	4.3 Prototype Calibration

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Comparisons
	5.3 Validation on N-way one-shot Setting
	5.4 Ablation Study
	5.5 Visualization of Prototype Calibration
	5.6 Parameter Analysis

	6 Conclusions
	Acknowledgments
	References

